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Abstract   

 
Horizon auto-tracking could be a very difficult 
problem at least from two aspects:  (1) the selection 
of pick within a trace usually ignores lateral 
continuity along dips, and (2) the resulting picks in 
the same horizon may often conflict with each other 
in a resulting horizon. In this paper, we proposed a 
pattern recognition-based algorithm to explicitly 
address these two difficulties: (1) an array of log-
Gabor filters are employed to generate the orientation 
vectors from seismic amplitude data and guide the 
pick selection; and (2) a minimum-spanning tree 
(MST) algorithm can guide and optimize the trace 
selection to minimize the pick conflictions, which 
yields a complete and accurate horizon.   

 

Introduction 

A horizon is a three dimensional surface defined by 
seismic reflection events. The goal of the horizon auto-
tracking is to track a user selected phase of the horizon 
curve waveform automatically by a computer program. 

The design of the 3D horizon auto-tracking algorithm 
must deal with the problems of pick selection and trace 
selection. Pick selection is to find a pick on a given trace. 
We propose a pick selection method with the aid of 
orientation vectors calculated for seismic data.  
Orientation vectors in 3D space can be derived from 2D 
vectors calculated along the inline and crossline 
directions.  The trace selection is to automatically decide 
the trace traversal order to apply the pick selection.   The 
trace traversal order is important because the resulting 
horizon can appear significantly different if the traces are 
traversed in a different order in the same survey. For 
example, the resulting horizon generated by line-by-line is 
quite different to the one by first-in-first-out (FIFO) 
method. Moreover, the line-by-line approach creates 
incoherent results for complex horizon. That is, the 
horizon picks appear very rough and jump across phase 
cycles from line to line. The same behavior can be 
observed in a FIFO-based picker. 

The pick and trace selection greatly complicate horizon 
auto-tracking in 3D, and often result in the necessity for 
experienced interpretors to manually interpret, which is a 
labor and time intensive process. Our solution is to use 

orientation vectors to accomplish the above difficulties by 
guiding pick selection, and optimizing the trace selection 
by a minimum spanning tree algorithm. 

 

Method 

 
In this section, we first introduce the pick selection 

algorithm using an array of 2D log-Gabor filters to 

generate orientation vector field (OVF), and then explain 

how the minimum spanning tree (MST) algorithm is used 

for the optimized trace selection. 
 
Pick Selection: Log-Gabor Filter Array 
 
As observed by Harrigan et al. (1992), horizons generally 

have a consistently high amplitude reflection signature, 

and display some degree of lateral continuity.  In the 

practice of horizon tracking, conventional methods 

usually employ a window-based approach in searching 

extrema. The window-based approach only looks at the 

adjacent trace vertically within a time window, while the 

lateral continuity is ignored.  Its very limited context often 

incurs the “off-cycle” effect where the extrema points are 

incorrectly linked across seismic phase cycles, which yield 

a wrong resulting horizon. This effect can be more severe 

in seismic data with high-angle layering structure. 
 
To preserve the lateral continuity of horizon tracking, we 

need to examine the seismic data patterns in a range of 

neighborhoods. The context information reveals which 

direction the horizon trends. The lateral continuity in 3D 

can be analyzed by finding horizon curves in 2D vertical 

slices, in both inline and crossline directions. For each 

seismic image in 2D, the horizon trends (or the tangent of 

horizon curves) are the salient continuous features that 

can be detected visually. Hence filters can be applied to 

extract the structural features, i.e., the orientation vectors, 

which preserve the lateral continuity. 
 
In the following, we outline a method of using a bank of 

optical filters to generate an OVF from a 2D seismic 

image. The orientation vector is used to post a new pick 

on each selected trace. 

 
2D Log-Gabor Filter  
 

As proposed by Field (1987), natural images have a 

frequency distribution as Gaussian in logartithmic scale, 

and the log-Gabor filter has the required logarithmic 

Gaussian profile. The seismic data follows the rule of 

natural images.  Figure 1 shows the frequency plot of a 

typical seismic trace. The frequency distribution reflects 

the logarithmic Gaussian patterns. The 2-D log-Gabor 

filter is defined in frequency domain as follows (Field, 
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1987): 

 (   )                                      (1) 

Where    is a radial component (see Figure 2a), and Hα 
is an angular component (see Figure 2b). The radial 

component is 2D Gaussian in logarithmic scale, and the 

angular component is Gaussian along orientations.  

 

 

Figure 1: The Power Spectrum of the Seismic Data 
Overlay with A Logarithimic Gaussian  Curve. One 

seismic trace from the experimental seismic data is 
transformed into frequency domain. The x-axis is 
frequency and y-axis represents the strength of frequency 
responses. It shows that the seismic data’s spectrum 
(blue) follows the logarithmic Gaussian distribution (red). 

 

 

 

        (a) Radial Component        (b) Angular Component 
 
Figure 2: Log-Gabor Filter in Frequency Domain.  

(a) Radial component (Hf): 2D Gaussian in logarithmic 

scale. (b) Angular component (Hα: Gaussian along 

orientations. 

 

 
Filter Array 
 
For input seismic data samples in the spatial domain 

 (   ), first apply a Fourier transform into the frequency 

domain  ̂(   ).  The application of log-Gabor filter in 

frequency domain is, 

 ̂     (   )        (   ) ̂(   )                   (2)  

 

where H is the log-Gabor filter with orientation θ and 

central frequency w.  Since it is an array of log-Gabor 

filters, their central orientations θ can be in a series of 

orientations, such as {                           }, 

and w can be in single or multiple scales as well. 

 

By inverse Fourier transform, we convert Ŷ <w,θ> (u, v) into 
a complex image in the spatial domain. When we line up 
all the filter responses for an individual sample at (x, y), 
we can derive the orientation at this point by getting the 
location of peak responses in the filter array. In the 
model, the most salient orientation γ at sample (x, y) is 
defined by the index of the peak value of the summed 
orientation responses in all scales w: 

 

 (   )         ∑ |      (   )|                  (3) 

 

The γ(x, y) is also referred as the apparent dip (Chopra 

and Marfurt, 2007). See figure 3(b) for an example, 

where the dip values are color coded. It is one of the two 

components of the OVF in the output, the other is the 

orientation energy E(x, y), which is the sum of filter 

responses with the orientation γ(x, y) in all scales: 

 

 (   )  ∑ |     (   ) (   )| .                   (4) 

 

The orientation energy E reflects the strength of 

orientation features. The low values of orientation energy 

mean that there are fewer oriented patterns in the 

neighborhood, while the stronger ones mean the 

orientation feature is more salient in the context. See 

figure 3(c) for an example.  

 

The same approach can be applied to the OVF 

calculation in a 3D seismic volume through the 

combination of inline and crossline volumes.  As a result, 

for each voxel in 3D, we get two vectors one in each of 

the inline and crossline planes. These vectors serve as a 

guide for pick selection in 3D data. 

 

 

Dip-guided Auto-Tracking 

 

Given an initial point (or seed point) and the vectors for 

the initial point in both inline and cross line directions, the 

pick selection process can be guided by OVF, which 

contains the following steps: 

 

1. Extrapolating the initial pick onto its neighboring 

traces by following the orientation vectors. 

2. Snapping the extrapolated point to the specif ic 

geophysical event (e.g., peaks, trough, or zero-

crossing). 

 

3. Extrapolating the initial pick onto its neighboring 

traces by following the orientation vectors (or 

the apparent dip angle). 

4. Snapping the extrapolated point to the specific 

geophysical event. 

5. Repeating steps 1 and 2 until a stop criteria is 
matched. 
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(a) Vertical Seismic Display 

 

 

 
(b) Apparent Dip 

 

 

 
(c) Orientation Energy 

 

Figure 3: Apparent Dip and Orientation Energy. (a) a 

vertical display of seismic slice; (b) the apparent dip 

derived from (a), and (c) the orientaion energy attribute of 

(a), which highlight orientation patterns. Seismic data is 

from the Eagle Ford shale in area of interest.  

The pick selection method can be iteratively applied to 

generate a horizon curve on a 2D seismic slice. 

However, the pick selection algorithm does not provide a 

guidance for 3D tracking, and is unable to generate a 

horizon surface. In the following, we introduce a method 

on how to traverse the traces within a 3D seismic survey, 

and show that the traversal order is optimized by 

maximizing the overall confidence by using an algorithm 

(MST) from the graph theory. 

 

 

Trace Selection: Minimum Spanning  Tree  
 

In our previous work (Yu et al., 2011), we used a 

minimum spanning tree algorithm to traverse the traces 

for horizon auto-picking. The idea is to view the trace 

selection process as a graph traversal problem. A 

horizon surface can be modeled as an undirected 

connected graph [N,V ], where N is a set of nodes (picks), 

and V is the set of edges between picks. For example, if 

pick p2 is derived from a neighbor pick p1, there is an 

edge drawn between node p1 and p2. If there is a fault 

between p1 and p2, no edge can be drawn. A spanning 

tree can then be generated from the root p0 to all the 

nodes in the graph. A weight, or cost, is then assigned to 

each edge. The cost is a number defining how 

unfavorable the edge is.  The smaller the cost, the more 

favorable the edge. The minimum spanning tree (MST) 

algorithm (Boruvka, 1926; Nesetril et al., 2001) searches 

through the graph’s edges, computes the sum of the 

costs of the edges, and finds the spanning tree with the 

minimum cost. The automatic horizon picker in our 

application employs the MST to find the optimized horizon 

with the minimum cost and thus the maximum of overall 

confidence scores. 
 

The MST algorithm applied to horizon auto-picking can 

be summarized in the following steps (Yu et al., 2011): 

 

1. Start with a collection of initial picks as seeds, 

which represent the initial current horizon. 

2.  For the current horizon, apply the pick 

selection algorithm to extend the picks on the 

current horizon’s boundary in all unfilled 

directions to their immediate unfilled neighbor 

traces. Mark these new extended picks as 

candidate picks, and calculate their confidence 

values. 

3. Select the candidate pick with the maximum  
confidence among all the candidate picks. 

4. Add the candidate pick into the current horizon, 

and the candidate pick becomes a confirmed pick 

in the current horizon. 

5. Repeat steps 2 to 4 until no new pick can be 

added. The result is the final horizon. 

 

The confidence value is employed as a heuristic to 

guide the search for MST, which is calculated based on 

the patterns of the wavelets around the picks and the 

locations of the picks. It is bounded between 0 and 1. 
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Examples 

 

The described algorithm was tested on 3D seismic survey 

contains faults and fractures from Eagle Ford shale 

resource play. To verify the robustness and accuracy of 

our algorithm, the fault surfaces were not picked prior to 

the horizon interpretation. 
 
OVF for both inline and crossline planes are calculated 

before the tracking starts. Each voxel in the seismic data 

contains two orientation vectors, one along the inline 

direction, and the other along the crossline direction. 

Figure 3 shows the apparent dip in (b) and orientation 

energy in (c) generated in one vertical slice display along 

inline direction (a). 
 
After generating the orientation vectors, we applied the 

MST algorithm to search for the horizon picks in 3D. We 

used only one seed at 2.264 second to pick on the trough 

event. Figure 4 shows the resulting horizon rendered on a 

vertical slice (a) and a base map (b).  Note that the faults 

over the horizon are automatically detected by sorting the 

confidence of candidate picks (see confidence results in 

Figure 4c), and fault patterns are formed naturally by 

tracking high confidence picks first in the fault 

surroundings, leaving the fault area with very low or zero 

confidence. As shown in the Figure 4a, the horizon 

segments are correctly picked across several 

uninterpreted faults with only one seed. These horizon 

segments appear discontinuous in 2D view; however, they 

actually connect to each other in 3D. The confidence 

values are also low at locations around the dome, and is 

why the picking process stops without going into the 

dome area. 

 

Conclusions 

 

In this paper, we proposed a novel method to generate 

orientation vectors from 3D seismic data. We further 

applied the orientation vectors in horizon auto-tracking 

algorithm to guide horizon pick selection. Combining with 

the MST algorithm in trace selection, one can pick a 

coherent horizon in 3D seismic data thoroughly and 

accurately. The proposed horizon auto-picking algorithm 

can significantly reduce the costs and improve the quality 

for automatic horizon interpretation. Besides the 

application in horizon autopicking, the OVF has many 

potential applications in other seismic interpretation 

tasks. 
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(a) Horizon in Seismic Vertical Slice  

 

 
     (b) The Resulting Horizon in Base Map View 

 

 
            (c) Confidence in Base Map View 

 
Figure 4: Horizon and its confidence.  (a) In this 

vertical display, the horizon segments (red) are 

automatically matched across uninterpreted faults. (b) In 

the basemap view of horizon, the fault is automatically 

outlined by picking the points with high confidence in the 

surrounding. (c) The confidence values are high in flat 

and clean areas (yellow and red), but low around the 

faults(cyan and blue). The confidence values are used to 

prioritize the candidate picks in the queue during the 

tracking process. Seismic data is from Eagle Ford shale 

in area of interest, and the horizon is ranged from 2.191 

to 2.534 seconds.  
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